
CEWES MSRC/PET TR/98-22

Exploring JSDA, CORBA and HLA based Mutech’s
for

Scalable Televirtual (TVR) Environments

by

Daniel Dias
Geoffrey Fox

Wojtek Furmanski
Vishal Mehra

Balaji Natarajan
H. Timucin Ozdemir
Shrideep Pallickara
Zeynep Ozdemir

04h01598

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.

Exploring JSDA, CORBA and HLA based MuTech's for Scalable

Televirtual (TVR) Environments

Daniel Dias1, Geo�rey Fox2, Wojtek Furmanski2, Vishal Mehra1, Balaji Natarajan2,

H.Timucin Ozdemir2, Shrideep Pallickara2, Zeynep Ozdemir2

1 IBM T.J. Watson Research Center
2 Northeast Parallel Architectures Center(NPAC) at Syracuse University

Submitted to the Workshop on OO and VRML in the VRML98 Conference to be held at

Monterey, California on Feb 16-19,1998.

Abstract

We discuss here new distributed computing

technologies of relevance for building multi-user

scalable televirtual (TVR) environments on the In-

ternet such as: Java Shared Data API (JSDA)

by JavaSoft, Common Object Request Broker Ar-
chitecture (CORBA) by Object Management Group

(OMG) and High Level Architecture (HLA) by De-

fence Modeling and Simulation O�ce (DMSO). We

describe our early TVR prototype based on VRML2

front-end and JSDA back-end, and we summarize

our ongoing work on exploring CORBA Events and

HLA Dynamic Data Distribution technologies for

building scalable collaboration servers for the Inter-

net.

1 Introduction

Java scripting support in VRML2!VRML97 set
the stage for experimenting with multi-user dis-
tributed virtual environments on the Internet [1, 2],
hereafter referred to as televirtual, or TeleVR, or
shortly TVR environments. A typical minimal con-
�guration of such a system would include a few
VRML2 browsers, downloading a common VRML
world, opening Java node based connections to a
collaboratory server which maps user's input such
as mouse motions on the suitable movements of the
corresponding avatars.

We developed a simple prototype TVR envi-
ronment of this type at Syracuse University within
a joint project [3] with IBM T.J. Watson using
JSDA [4] framework for building Java collaboratory
services.

Several other prototype TVR environments
of similar type were developed recently by various
groups [Sony, Paragraph(Mitra), BlackSun, MERL
etc.] and a set of VRML SIGs was formed such
as Universal Avatars, Humanoid Animation [5] or
Living Words [6], focused on standardizing various
aspects and software layers of VRML based net-
worked VR.

The detailed architecture of collaboratory
servers is not being directly addressed by the
VRML community. For example, Living Worlds
[6] encapsulates various multi-user technologies in
terms of a MuTech node and focuses on its inter-
actions with local/client side VRML nodes in the
scene graph. There are some associated ongoing
standard e�orts [7] in the MuTech domain. Re-
cently, Open Community led by Mitsubishi Electric
Research Labs (MERL) released an open standard
proposal.

In the VRML community framework, we can
express our work and the content of this paper as
research into promising MuTech technologies that
are based on stable open standards and are capable
to enable or facilitate the design or development of
truly scalable TVR environments.

1

We are exploring the following collaboratory
server technologies of relevance for TVR within the
ongoing R&D activities at NPAC:

� JSDA from JavaSoft

� CORBA objects and Event Services

� HLA/RTI by DMSO

In this paper we expose the CORBA domain
and discuss relations between VRML and the emer-
gent distributed object technologies.

2 TVR Front-end Description

Our current TVR prototype has two versions of
the VRML+Java front-end: one is based on Script
Nodes and the other is based on External Author-
ing Interface(EAI) [8].

EAI version of the prototype was tested on
SGI's CosmoPlayer(1.0.2) version running as a plu-
gin to Netscape 3.0 Web Browser on PC platform.
Script Node version of the prototype was tested on
Sony's Community Place running as a plugin to
Netscape 3.0 web browser and also SGI's Cosmo-
Player(1.0beta3a) running as a plugin to Netscape
3.0 web browser.

Our current 'world' metaphor is given by a
set of rooms with avatars represented by simple ge-
ometrical objects (such as colored cones). We are
now adding more realism in terms of more human-
like avatars with custom behaviors, conforming to
the speci�cations of the Humanoid Working Group
Proposal. We are also exploring add-on audio-
conferencing capability using commodity API's like
Microsoft NetMeeting.

3 TVR Back-end Description

Java Shared Data Architecture (JSDA) [4] provides
a Shared Framework for Java at the data level.
Data objects are shared over speci�c instances

of Channels (broadcast communication paths) be-
tween two or more Clients (objects which are the-
source or destination of data) in a collaboration en-
vironment. Any Client object, which needs to reg-
ister its interest in receiving messages sent over a
channel, must implement the Channel Consumer.
In a similar way, if a client is interested in being
noti�ed about changes in the state of some other
object it should implement the Channel Observer

interface. To register interest in a certain channel,
a client �rst needs to join the session that hosts this
channel and then to join the channel.

JSDA allows to share objects using object
serialization mechanisms since it has the Remote
Method Invocation (RMI) based implementation.
JSDA also has objects which encapsulate manage-
ment policies for application objects. One example
is the Session Manager which authenticates clients
to determine if they could join a session.

Currently JSDA is a research-oriented API
at JavaSoft Corporation and our TVR prototype
is being packaged, as an e�ective demonstration of
JSDA's capabilities, along with the main distribu-
tion.

4 Towards multi-server JSDA en-

vironments

Figure 1 illustrates a more complex TVR
World(currently under development at NPAC) in-
cluding N avatars in M rooms where both N and M
can be large(Internet Clubs, Malls etc). Rooms are
mapped to sessions(1,2, etc.) running on individual
servers. Each room/session publishes local sensory
channel used to exchange coordinate/visual infor-
mation between avatars in this room. Some rooms
can also publish long range channels (e.g. audio)
which are accessible from other rooms.

Figure 1 illustrates an avatar moving from
room1 to room2. It detaches from room1 vi-
sual/sensory channel and attaches to room 2 vi-
sual/sensory channel and retains the radio channel
to listen news/ads/broadcast from room 1. JSDA
Sessions are mapped on "rooms" and JSDA Chan-
nels are assigned to individual avatars, present in

2

Figure 1: JSDA based TVR

a given room. Only limited number of avatars per
room is allowed, and there is also a limit on num-
ber of Sessions per collaboratory server. This sim-
ple model assures world-wide scalability, assuming
that new rooms join with their own session servers
and that most interactions are local.

5 Towards CORBA based Col-

laboratory Environments

JSDA is a useful framework for prototyping sim-
ple collaboratory applications but it does not of-
fer either a wire protocol or a high-level API for
client-server communication - messages are typi-
cally passed as strings, custom encoded/decoded
by JSDA clients/servers. The family of T12x pro-
tocols (which in fact inuenced the JSDA design
and was adopted by Microsoft's NetMeeting) could
be a natural candidate for a TVR protocol. An-
other possibility is that such a protocol would be
developed as in the course of current interactions
between MPEG-4 [9] and VRML Streaming groups.
However, another tempting alternative is to select
one universal wire protocol for the Internet that
would be capable to support all required communi-

cation patterns in all relevant application domains.

At the moment, the most promising candi-
date for such lingua franca on the Web is Internet
Inter-ORB Operability Protocol (IIOP) by OMG
[10] that enables interoperation between ORBs
from various vendors and is also frequently used
as internal inter-ORB protocol between clients and
servers within a single vendor CORBA environ-
ment. In the 100% pure Java sector, similar
support is o�ered by RMI (in fact supported as
one of the JSDA implementation modes), whereas
CORBA o�ers both multi-platform and multi-
language support in terms of the universal IDL in-
terfaces/mappings and language-speci�c bindings.
With the onset of ORBlets, dynamically download-
able or resident in Web browsers such as supported
by Netscape/Visigenic, CORBA gets now in fact
even more tightly integrated with Java towards a
new powerful computing paradigm often referred
to as Object Web [11].

Also it is imperative that to operate in to-
day's heterogeneous computing environments, dis-
tributed applications must work on a plethora of
hardware software platforms. Suitability to busi-
ness class applications calls for capabilities beyond
conventional web based computing - scalability,
high availability, performance and data integrity.
This is where Java CORBA play a role which mu-
tually complements each other, Java provides for
easier distribution of CORBA-based applications
with CORBA providing the where-with-all of a dis-
tributed infrastructure.

6 Java-CORBA combination

Java's multi-threading support encouraged devel-
opers to write web-based distributed software based
on proprietary server protocols. Each such server
can be viewed as a speci�c remote computational
object. On the other hand, CORBA o�ers a generic
support for such server objects based on distributed
object technology. Instead of encoding low level
messages, sending them through the network and
decoding them at the receiver side, programmer
just calls an appropriate high level method on a
distributed object without the need of any spe-

3

ci�c low level network programming. This high-
level abstraction capability is de�nitely a promis-
ing framework for the future distributed solutions.
The only two alternatives that can be viewed as
competivtive are Java RMI and Microsoft DCOM -
but only CORBA is both language- and platform-
independent.

However, rather than a competition or alter-
native to CORBA, Java is being now viewed by
many as a complementary technology which forms
a perfect match with CORBA within the emergent
'Object Web' trends. In a nutshell, the master plan
of the Object Web (supported by Netscape, Oracle,
IBM, Sun and others) is to implement CORBA con-
trol i.e. the middleware layer (including ORBs and
some core services) in Java.

Since Java has an inverse mapping to IDL, a
programmer can stay in the Java environment dur-
ing the software development. Java-CORBA im-
plementations can run on thin network computers
and low-end consumer devices because of their low-
complexity and footprint. Java's mobile byte code
and CORBA's Dynamic Invocation Interface (DII)
simpli�es upgrades of clients' software in large dis-
tributed systems. Java and CORBA combination
truly provide the right building blocks for a dis-
tributed object computing such as: a) platform-
independence, strong security model etc. in Java
language; and b) static and dynamic interfaces,
synchronous and asynchronous method calls with
the comprehensive set of Facilities and Services in
CORBA.

These factors might re-
sult in the CORBA/Java combination to assume
a central role in shaping the Internet during the
next phase of its evolution. Such emergent Object
Web could have impact in several areas, including
multi-user collaboratory environments.

In particular, the collaboratory environments
can be naturally addressed by CORBA in terms
of the Event Service - one of the standard 15 ser-
vices developed and sustained by OMG (together
with Security, Persistence, Concurrency, Naming,
LifeCycle, Relationships, Trading and other such
fundamental object services). In the following Sec-
tions, we describe the CORBA Event Service which

o�ers similar functionality as the JSDA Channel
discussed in Sections 3 and 4.

Push
Supplier

Push
Consumer

Supplier
Pull

Pull

Consumer
Proxy

EventChannel

Event Transfer
Direction of

Pull

Supplier
Proxy

Consumer

Push Push

Pull

Figure 2: CORBA Event Service

7 CORBA Event Service

The Event Service (ES) allows for decoupled com-
munication between objects: instead of a client di-
rectly invoking operation on a target object, it can
send an event that can be received by any number of
objects. The sender of an event is called supplier,
and the receivers are called consumers. Suppliers
and consumers are decoupled i.e. they do not know
each other's identities.

The Event Service introduces the notion of
Event Channel. Suppliers send events to an Event
Channel, and consumers receive these events. Each
channel can have multiple consumers and suppliers,
and all events sent by a supplier are made available
to all consumers of that channel.

The ES supports four di�erent modes of
consumer-supplier interactions. The consumer
could be push/pull-Consumer, and the supplier
could be a pull/push Supplier. One of the advan-
tage of using the EventChannel is that, the events
can be bu�ered to accommodate consumers of dif-
fering speeds. The suppliers and the consumers
both register with the EventChannel since other-
wise its not possible to determine the source of
the event in case of the supplier and also since its
not possible to invoke the appropriate noti�cation
method on the consumer.

Supplier objects ask a proper ProxyConsumer

4

object from the Event Channel's ConsumerAdmin
object. Whenever the supplier wants to send an ob-
ject to the Event Channel, it uses its corresponding
ProxyConsumer object. Similarly, consumer ob-
jects ask a proper ProxySupplier object from the
Event Channel's SupplierAdmin object. Whenever
a channel receives an event, it informs all the Prox-
ySupplier objects. Then, each proxy object noti�es
its consumer.

8 CORBA-Based Collaboratory

Our work on CORBA based collaboratories was ini-
tiated at the IBM T.J. Watson Research Facility
and is being pursued further through a joint-project
[3] with the Northeast Parallel Architectures Cen-
ter(NPAC), Syracuse University.

So far, we developed an initial API for
CORBA based collaboration. The IDL de�nition
of this API is given in the following section. A pro-
totype version of this API using CORBA objects as
"shared data" and CORBA servers as "collabora-
tory servers" and Netscape/Visigenic based ORBlet
front-ends has been developed at IBM.

We are currently extending this design and
preparing a re�ned implementation using CORBA
Event Service that plays a similar event �ltering
role as the JSDA Channels.

EventChannel EventChannel

Client

Client Client

Client

Client Client
SchedulerScheduler

Party
Coordinator

Figure 3: Event Service based Collaboration
Framework

These are the two most signi�cant IDL de�-
nitions in the Collaborative System. The IDL de�-
nitions signify the operations a Client could invoke

on a remote instance of these objects. Nevertheless,
an invocation of any of these aforementioned opera-
tions should be preceeded by a successful reception
of a remote handle to these objects. Acquisition
of a handle to the PartyCoordinator, requires the
client to invoke a bind to that Object. To digress on
the semantics of the bind , it should be clear that
in a HighAvailability scenario there would be mul-
tiple instances of the PartyScheduler with a static
Hashtable containing the list of updated Parties i.e.
Coordinator Objects.

interface Coordinator {

boolean setMaxClients(in long arg0);

long getMaxClients();

long numberOfMembers();

typedef sequence string sequence_of_string;

MultiCoordinator::Coordinator::sequence_of_string

getClientNames();

boolean isEmpty();

long register(in long arg0, in string arg1,

in Client::ClientControl arg2);

boolean deregister(in long arg0);

boolean broadcast(in string arg0);

boolean whisper(in string arg0, in long arg1);

};

interface PartyScheduler {

boolean createParty(in string arg0);

long getPartyID(in string arg0);

MultiCoordinator::Coordinator

getPartyHandle(in long arg0);

};

Elucidating further on the semantics of oper-
ations on these remote objects, the PartyScheduler
is the one which schedules the appropriate instance
of the Coordinator Object to coordinate Clients
logged onto a speci�c session (Party) comprising of
possible di�erent applications. Basically, the Par-
tyScheduler is responsible for spawning instances
of the Coordinator, possibly across a di�erent sub-
net, and also for returning an remote Coordinator-
handle to the Client. A brief description of the
sequence of operations in the Collaborative System
follows.

5

The Client initiates a bind to the PartySched-
uler Object. Given that this is successful, in the
event that there is a Distributed Directory service
and the Active Object server is in place, the Client
is now ready to invoke the IDL-de�ned operations.

1. It starts with the createParty(String party-
Name) function which would return a true in
the event that a new Coordinator Object has
been instantiated or a false to signify the prior
existence of the desired party. It is the Sched-
uler's job to signal the appropriate noti�cation
to the Clients and perform appropriate house-
keeping to reect new instances of Coordina-
tor's. All Coordinator objects scheduled by the
PartyScheduler are identi�ed by an ID.

2. The Client now has the option to decide wether
he wishes to join an existing Party or initi-
ate the existence of a new one. In the lat-
ter case Step[1] is repeated as mentioned ear-
lier. Once the process is over, the Client gets
a handle to the Coordinator Object by in-
voking long getPartyID(in string arg0); Mul-
tiCoordinator::Coordinator getPartyHandle(in
long arg0); in succession. This is in keeping
with the policy of the PartyScheduler to iden-
tify Coordinator's on the basis of the ID that
it assigns during their instantiation.

3. Once Steps I and II are over and done
with, the Client in a Distributed Collabora-
tion mode, and can invoke operations spec-
i�ed in IDL de�nitions for the Coordina-
tor. These include boolean broadcast(in string
arg0),boolean whisper(in string arg0, in long
arg1); among other functionalities o�ered by
the PartyCoordinator Object.

This is just another demonstration of the
complementary roles Java CORBA play in a dis-
tributed environments. Java provides for easier
distribution of CORBA-based applications with
CORBA providing the where-with-all of a dis-
tributed infrastructure. In summary, CORBA of-
fers both a potential candidate for universal wire
protocol, IIOP, and a natural collaboratory frame-
work based on shared CORBA objects and exible

message �ltering mechanisms o�ered by the Event
Service.

9 Scalability and Fault-tolerance

in Collaborative Systems

Scalability and Fault-tolerance are the essential re-
quired features in Collaborative Systems and they
can be naturally addressed in the CORBA model.

The replication of servers on di�erent partici-
pating hosts in a collaborative environment answers
the scalability problem when the load (participat-
ing sessions) on a server crosses a certain threshold.
The current API supports two di�erent approaches.
The notion of groups within a certain session allows
us to de�ne one object for each group and place
these objects on di�erent machines easily. It is also
possible to split the Event Channel if it exceeds the
certain capacity and connect two Event Channels
to each other as supplier and consumer since one
Event Channel can be a consumer/supplier of an-
other Event Channel.

Fault-tolerance in Collaborative Systems can
be solved by migrating sessions to a di�erent partic-
ipating host with minimal or little disruption when-
ever the machine hosting the server crashes. The
ObjectServices agent, which is a distributed direc-
tory service, allows for migration of sessions to a
di�erent participating host in the case that a ses-
sion terminates unexpectedly on one of the hosts.
The Events can be stored persistently by the Event
Channel to ensure that events are not lost on sys-
tem failures.

10 Using CORBA Event Service

for Message Broadcasting

At NPAC, we implemented recently the Event Ser-
vice for omniORB2 [24], which is a free C++ Ob-
ject Request Broker under development by Olivetti
and Oracle Research Labs. We wrote the standard
Event Service with C++ and omniThread thread
library. We tested this software with a Chat pro-
gram using the Netscape 3.0 with OrbixWeb based

6

ORBlets.

We also start exploring the issues, related to
using CORBA Event Service for Distributed Inter-
active Simulation (DIS) [14, 15] PDU broadcast-
ing and for HLA/RTI support. Some additional
services are required to support event handling in
multi-user environment. For example, Event Ser-
vice does not care about the originator of the event.
But for multi user environment we need to know
who sent the message. DIS PDU format includes
this information in its own body. The Event Ser-
vice is central server based approach compared the
peer-to-peer architectures. We can solve this prob-
lem by providing an Event Channel for each active
object in the virtual environment.

For the large scale interactive simulations, it
is imperative that we support event �ltering to ad-
just the frequency of events received from the sup-
plier. The obvious choice is to make this decision
a responsibility of Event Channel so that the mes-
sages are being handled before they are on the net-
work. Event �ltering could be based on time stamp-
ing. However, this simple solution has a profound
problem with synchronization of time values in dis-
tributed simulations. The well-known solution is
to provide the Global Virtual Time (GVT) calcu-
lation to the system so that out of order messages
can be handled properly with the rollback mech-
anism. GVT calculation allows us to release the
storage for the logged events since nobody expects
to receive an event time stamped earlier than the
current GVT.

One another intriguing option for message
transfer is to use multicasting. This requires some
changes in the Event Service implementation. For
Push Consumer, instead of giving a separate Push
Supplier for each consumer, it is possible to give one
Push Supplier for each multicast group so that mul-
ticast Push Supplier can serve multiple consumers.
This change also reduces the computation require-
ment on the Event Channel server.

Several new advanced event handling features
are currently in the OMG standardization pipeline
in the form of the CORBA Noti�cation Service [25].
New capabilities include: support for Quality of
Service, integration with Transaction and Security

Services, and more exible/user-adjustable format
for event objects.

11 Emerging Collaboratory

Server Technologies based on

Distributed Object Technol-

ogy

Experiments with Java and CORBA based collab-
oratories described above represent our �rst initial
steps towards systematic Object Web support for
the High level Architecture (HLA) based modeling
and simulations.

HLA [16, 17, 18] is a next generation frame-
work [21] for distributed simulation systems and
promoted by DMSO (Defense Modeling and Simu-
lation O�ce) to replace the current DIS standard.
HLA's enabling middleware called Runtime Infras-
tructure (RTI) is based on distributed object tech-
nologies and DMSO is promoting HLA/RTI within
the OMG towards a Vertical CORBA Facility for
the Interactive Modeling and Simulation.

At NPAC, we are working with the DoD High
Performance Modernization program on integrat-
ing advanced web/commodity technologies with
large scale Forces Modeling and Simulation sys-
tems, being converted to or already based on HLA
by DMSO and the enabling RTI middleware.

As part of this project, we are building: a)
an Object Web based implementation of IIOP and
HTTP server called JWORB (Java Web Object Re-
quest Broker); and b) the Object Web based RTI
layer to operateon top of JWORB that will pro-
vide Web based Simulation support for HLA and
a natural linkage to front-end technologies such as
VRML. For large geographically distributed MS
systems, middleware must be given by a mesh of
scalable collaboratory servers running on hetero-
geneous platforms and supporting speci�c simu-
lation components written in various languages.
A Java/CORBA based RTI middleware such as
JWORB with VRML front-end seems to o�er an
attractive pervasive architecture for such systems.

Of a particular interest within the DoD MS

7

is the Simulation Based Acquisition or Virtual Pro-
totyping Environments where new systems are en-
gineered and tested in the virtual space before the
�rst real prototype is manufactured.

Figure 4: Framework for Virtual Prototyping En-
vironments

Figure 4 illustrates a sample of such a system
with JWORB based middleware and a collection of
front-ends, including (XML based) data analysis,
(Java based) data ow visual authoring software
and (VRML based) visual 3D display. Each of these
activities can be made collaborative via the base
RTI mechanism or via CORBA Event Service or via
JSDA, and they can all cooperate via the JWORB
based componentware.

12 Summary

We discussed here a set of new promising dis-
tributed computing frameworks (JSDA, CORBA,
RTI) which o�er open standards based support for
building scalable multi-user virtual environments
on the Internet. The essential feature of such envi-
ronment - communication locality - is enabled via
event �ltering in terms of JSDA channels, CORBA
Event service and RTI routing spaces [19, 22].

So far, we acquired few early prototyping ex-
perience using JSDA and CORBA technologies and

we are now exploring the HLA/RTI environment.
In our JWORB middleware framework under de-
velopment, we will be able to integrate, experiment
with and conduct comparative analysis of all three
collaboratory technologies discussed here: JSDA,
CORBA and HLA/RTI.

References

[1] Bernie Roehl, Justin Couch, Cindy Reed, Tim Ro-
haly and Geo� Brown, Late Night VRML 2.0 with
Java, 1996

[2] Rodger Lea,Ken Miyashita and Kouichi Matsuda,
Java for 3D and VRML worlds, 1996

[3] Syracuse University/IBM Technical Report on Pro-
totype for Scaleable TeleVirtual Environments for
the Web

[4] Java Shared Data Architecture(JSDA) - A collab-
orative framework under development at JavaSoft.
at http://java.sun.com/people/richb/jsda/

[5] VRML Humanoid Animation Working Group
at http://ece.uwaterloo.ca:80/ h-anim/

[6] Living Worlds Standards proposals - Mitra, Mitra
Internet Consulting.
at http://www.livingworlds.com/

[7] John W. Barrus, Richard C.Waters, and David B.
Anderson - MERL Research Lab, Locales and Bea-
cons: E�cient and Precise support for Large Multi-
User Environments, IEEE Computer Graphics and
Applications, 16(6):50-57, November 1996, also at
http://www.merl.com/reports/TR95-
16a/locales.html

[8] External Authoring Interface Reference
at http://vrml.sgi.com/moving-worlds/
spec/ExternalInterface.html

[9] Moving Picture Experts Group (MPEG)
at http://drogo.cselt.stet.it/mpeg/

[10] CORBA 2.0 Speci�cations - Object Management
Group http://www.omg.org

[11] Dan Harkey and Robert Orfali, Client/Server Pro-
gramming in Java and CORBA, John Wiley Sons,
Inc., 1997

[12] Sean Baker, CORBA Distributed Objects, Addison-
Wesley and ACM Press, 1997

[13] CORBA Services Speci�cations - Object Manage-
ment Group http://www.omg.org

8

[14] The DIS Vision, A Map to the Future of Dis-
tributed Simulation, 1993, at SISO's DIS section (
http://siso.sc.ist.ucf.edu/dis/index.htm)

[15] IEEE Standard for Distributed Interactive Simula-
tion - Application Protocols, IEEE 1278.1-1995

[16] High Level Architecture Federation Development
and Execution Process (FEDEP) Model Version
1.0, at http://www.dmso.mil/projects/hla

[17] High Level Architecture Interface Speci�cation Ver-
sion 1.2 -Draft 6,
at http://www.dmso.mil/projects/hla

[18] High Level Architecture Time Management Design
Document Version 1.0
at http://www.dmso.mil/projects/hla

[19] Danny Cohen and Andreas Kemkes, Using DDM -
an Application Perspective , 1997 Spring Simulation
Interoperability Workshop (SIW), 97S-SIW-014

[20] James O. Calvin and Richard Weatherly, An Intro-
duction to the High Level Architecture(HLA) Run-
time Infrastructure(RTI) , March 1996, 14th DIS
Wokshop , 96-14-103

[21] Duncan C. Miller, The DOD High Level Architec-
ture and The Next Generation of DIS , March 1996,
14th DIS Wokshop, 96-14-115

[22] Katherine L. Morse, Interest Management in Large-
Scale Distributed Simulations , UC Irvine,
Information and Computer Science Technical Re-
port, ICS-TR-96-27 at
http://jblevins.ics.uci.edu/Dienst/UI/2.0/
Describe/ncstrl.uci%2fICS-TR-96-27

[23] DIS-Java-VRML Working Group (headed by Don
Brutzman) proceedings.
at http://www.stl.nps.navy.mil/dis-java-vrml/

[24] omniORB2 at http://www.orl.co.uk/omniORB/

[25] CORBA Noti�cation Service Proposals - OMG
http://www.omg.org/library/schedule/
NOTIFICATION SERVICE RFP.htm

9

